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Abstract: The question of energy supply continuity is essential from the 

perspective of the functioning of society and the economy today. The study 

describes modern methods of forecasting emergency situations using Artificial 

Intelligence (AI) tools, especially neural networks. It examines the structure of a 

properly functioning model in the areas of input data selection, network topology 

and learning algorithms, analyzes the functioning of an energy market built on the 

basis of a reserve market, and discusses the possibilities of economic optimization 

of such a model, including the question of safety. 

 

Introduction 
 

A shortage in energy supply may take various forms and particular 

attention should be paid to: voltage non-compliance with applicable 

standards, i.e. excessively low voltages, temporary network overloads, 

power outages, and long-term supply shortages due to blackouts (Marsadek 

& Mohamed, 2013, p. 466). Because energy supply shortages result in 

economic losses, a number of measures are used to estimate them (for 

example Total Social Cost – TCS) and to evaluate the market's capability to 

satisfy demand (for example Effective Load Duration Curve – ELDC, Loss 

Of Load Expectation – LOLE, and Expected Energy Not Served – EENS).
1
 

Whichever method of evaluating the stability of the energy system is 

adopted, forecasting the occurrence of undesirable incidents is a key 

                                                 
1 More information can be found in (Jasiński, 2011). 



 

element of energy security and economic optimization. Modelling the 

behavior of the energy market in terms of the abovementioned shortages in 

energy supply is possible owing to the use of AI tools, such as Artificial 

Neural Networks (ANN). The forecasting of undesirable incidents should 

also take into account the system of reserves, whose role consists in 

supplying corresponding levels of production capacity in the case of 

unexpected operating conditions, such as damage to components of the 

energy system infrastructure or increase in demand. The aim of the study is 

to analyze the possibility of applying ANN to assess energy supply security 

and to analyze various reserve market models in terms of economic 

optimization. 

 

Methodology of the research 

 
The authors conducted an energy market analysis based mainly on 

literature analysis. References were made to studies performed in many 

parts in the world and in various markets in order to ensure the applicability 

of the presented methods to more than a few selected energy markets. Apart 

from the literature analysis, the authors also used their own empirical 

research conducted over many years in specific energy markets, with 

particular focus on the Ontario region. 

 

Principles of Artificial Neural Networks 

 

As the name suggests, ANNs are mutually linked artificial neural cells. 

The definition of a neuron was developed as early as the 1940s, and figure 

1 presents the general structure of a single cell. It features a number of 

inputs (labelled x1 to xn) and corresponding 'weights', the latter being real 

numbers. Any signal that reaches a cell is multiplied by the corresponding 

weight. The products of all the inputs are then summed, and the total is 

transformed using an activation function. In the learning process, the 

weights are subject to numerous modifications, which consequently 

improves the responses of the ANN. We may say therefore that the 

intelligence of the network is contained within the neuron weights. The 

functional and learning processes of ANNs are frequently described 

algorithmically in the subject literature. This study focuses on the possible 

practical applications of ANNs rather than the IT and algorithmic details of 

constructing an actual network simulator. 

 

 

 

 



Figure 1. Structure of a single neuron 

 
Source: own development based on Ukil (2007, p. 80) 

 

Selection of input data for the model 
 

The basic element that determines the quality of the forecast is the set of 

input data that describes the modelled phenomenon. Traditional 

econometric models require some indication of the type and degree of these 

relationships. An undeniable advantage of the use of ANNs is their ability 

to independently search for links between explanatory variables and 

explained variables. The key task is, therefore, the selection of the most 

appropriate input data to suit a given forecast. In terms of forecasting 

energy demand or pricing, the type of explanatory variables depends on the 

time horizon adopted. Long-term forecasts use such aggregates as GDP, 

while short-term forecasts focus more on weather-related data and short-

term consumer behavior (i.e. related to watching popular TV programs like 

the Super Bowl). Jasiński (2014, in-press) and Jasiński & Ścianowska 

(2014, in-press) have examined information regarding the selection of input 

data, depending on the adopted prediction type. 

Other explanatory factors are also required for analyses related to the 

risk of disruptions to the energy supply. The subject literature takes 

particular interest in the weather factor which, although often applied in 

most short-terms demand forecasts, in this case the volume of data required 

generally depends on the number of transmission lines. In other words, 

each transmission line usually has at least one corresponding atmospheric 

variable that describes the weather in which that given line operates 

(Marsadek & Mohamed, 2013, p. 474). A problem that can arise in the case 

of highly extensive transmission lines is that different atmospheric 

conditions may apply to its different sections. In such a situation, the input 

data should be complemented with a larger volume of variables, and there 

are no restrictions in this case regarding explanatory variables. However, 

the general principles of creating ANN models suggest that the quantity of 

input data should tend to be low in order to provide the model with only 

relevant data. This is confirmed in the studies by Marsadek & Mohamed 

(2013), in which the authors achieved an improvement of model quality by 



 

reducing the number of explanatory variables from 161 to as few as 23 for 

selected models, based on Principal Component Analysis (PCA). 

The second type of data input is that usually derived from monitoring 

systems and includes information on the load on transmission lines. The 

actual number of variables usually depends on the number of buses 

(Marsadek & Mohamed, 2013, p. 474). 

The third type of data comprises technical and statistical information 

related to the functioning of the energy distribution system, including 

network parameters and response times in the event of errors (Kim & Joo, 

2006). 

The subject literature covers both those models based on variables of the 

abovementioned groups and those functioning solely on the basis of a 

selected type of information. For example, modelling the risk of voltage 

drops is possible using only data for input voltage rates on the transmission 

lines (Chen et al., 2006). Of course, using only this type of variable at the 

input of the model would not forecast a network failure, as the modelled 

variable would require reference to the most relevant explanatory data. 

 

Network architecture and learning method 

 

Forecasting models are characterized in this case by the variety of 

architecture applied. For example, Multilayer Perceptrons (MLPs) are 

prevalent in energy price and demand analyses, and are the most popular 

type of ANN. Although also constructed on the basis of MLPs (Chen et al., 

2006, Swetha & Sudarshana, 2014), models used to estimate the risk of supply 

shortages are often based on other solutions as well, such as General 

Regression Neural Networks (GRNNs) (Marsadek & Mohamed, 2013) and 

Radial Basis Function Networks (RBFNs) (Rashidi & Rashidi, 2004). Both 

types of ANN are derived from MLPs, but with extensive modification 

applied to them. Jasiński (2003) gives more information on their structure  

Irrespective of the type of ANN, the goal is to optimize the remaining 

parameters of the model. In the case of an MLP this determines the number 

of hidden layers and also the number of neurons in each (the number of 

cells in the input and output layers depends on the number of explanatory 

and explained variables). Furthermore, each cell should have an appropriate 

activation function selected and, in most cases, its parameters as well. It is 

usual to construct all cells in a given layer on the basis of identical 

transformations. RBFNs and GRNNs do not require the determination of 

the optimal number of layers, as this parameter is always preset: the former 

have three layers whilst the latter have four. 

One of the most popular MLP learning methods is backward 

propagation of errors (BP). However, as shown in both the literature and 



empirical studies conducted by the author, in many situations other gradient 

methods are worth applying as well. Among the ANN training algorithms, 

the Levenberg-Marquardt method (Swetha & Sudarshana, 2014) and 

conjugate gradient method appear to be particularly useful. 

Prognostic models are sometimes built on the basis of several networks 

rather than a single one. Such an approach is justified when there is the 

need to model several explained variables. Theoretically, ANNs can 

forecast many output variables within a single network; however, 

experience shows that satisfactory accuracy can only be achieved when 

forecasting a single variable. Therefore, each of the modelled values should 

be forecast using a single ANN. Such an approach was applied to determine 

system stability where initially a short-term (one-day) forecast was made 

for power system load.
2
 The obtained data, with concurrent knowledge of 

up-to-date values, were used for the next step in error estimation. 

Afterwards, the obtained information was used as MLP input data to 

predict the random component of power system load. Another network 

(RBFN) determined the stability margin on the basis of the expected 

stochastic part of the load and expected future load. The margin was added 

to the MLP network in order to minimize its forecast error (Ukil, 2007, pp. 

146-147). 

There are many possibilities for cooperation between ANNs sharing the 

same and different architectures, as well as between ANNs and other AI 

tools, such as the Genetic Algorithm (GA). GA support, or similar 

evolution strategies (ES), may be independent (without ANN) or used to 

assess power systems (Samaan, 2007). Another possible technique consists 

in using the models independently, and then verifying whether they all 

indicate the same conclusions. 

 

 

The role of reserves in providing power system security 

 

The deterministic security of a network is the ability of the power 

system to endure unexpected circumstances without the necessity of halting 

operations related to satisfying demand, except in cases of voluntary 

waiver. There are two types of security-provision actions used for power 

systems: preventive and corrective. 

Preventive actions include repartition of already established supply 

volumes under the conditions preceding the failure, whilst corrective 

actions include introduction of quotas for selected types of demand in 

                                                 
2 Such forecasting can be successfully conducted using an ANN, although other techniques 

may also be used. 



 

specific conditions (Aghaei et al., 2009). This means that reserves are 

resources that can facilitate implementation of preventive and corrective 

actions to restore security. 

Reserve maintenance services, called Ancillary Services (AS), can be 

classified as follows: 

− Ten-minute spinning reserve (TMSR); 

− Ten-minute non-spinning reserve (TMNSR); 

− Thirty-minute operating reserve (TMOR). 

The first two categories involve the capacity of units connected and 

units not connected to the system to provide increased energy volume for 

10 minutes, whereas the third involves the capacity of units connected and 

units not connected to the system to provide increased energy volume for 

30 minutes. 

In order to utilize the supply reserve from active units, their resources 

must be synchronized with the network and must be able to reach the 

expected production level in a short time frame. The actual volume of the 

operating reserves is the volume of production capacity above the level 

resulting from demand, which ensures supply security and is available for 

distribution in case of system failure. Requirements concerning the volume 

of reserves are based on the highest possible supply volume that can be 

lost. The available operating reserve volume is activated to secure an 

energy supply in the event of system failure. Thus the supplied energy 

replaces the volumes that were lost as a result of the failure. 

The substitute energy may be delivered in two ways: 

− from active production units that operate below their maximum level of 

production capacity, 

− from inactive production units able to begin operation and produce 

energy quickly (Likover, 2014). 

The reserve planning strategies may take different forms (Baldick et al., 

2005). The most popular form utilizes a sequential approach to ordering 

reserves, whereby the process of scheduling reserve maintenance services 

proceeds after an energy supply plan for a separate market has been 

prepared (Liu et al., 2000). Under this method, the reserve-related services 

are planned by quality, in descending order. This market model was 

adopted by independent systems operators (ISO) in California in 1998, but 

it proved to be vulnerable to manipulation by the market participants. 

The flaw of this method, related to the functional separation of the 

energy market and the reserve market, is particularly visible when the 

original plans concerning energy supplies do not allow supply at an 

appropriate level of production capacity to satisfy the requirements in terms 

of reserves. In such a case, the market operators must inevitably apply for 



participation in a system to a power plant that offers energy at a higher 

price, which evidently leads to deterioration of social well-being and results 

in a loss to the entire economy. 

The second method of scheduling energy reserve orders involves the 

simultaneous planning of different types of reserves in line with the 

demand level, but still on a market separated from the energy market. By 

this method, the reserve market, which is thus attributed with the character 

of substitute goods, is known as a disaggregated parallel market (Afshar et 

al., 2008). 

 

The role of the auction market in providing security and economic 

optimization of the power system 

 

The third method, used by such operators active on the East Coast of the 

United States as: PJM, New England and New York, involves system 

operators offering reserve provision services through planning, parallel to 

actual energy supplies. This facilitates optimization of each node by, for 

example, balancing the energy market, and satisfies the requirements for 

each service connected with reserve maintenance. The pricing of energy 

and reserves proceeds concurrently, and includes lost opportunity costs 

resulting from the unavailability to supply other products (Liu & Liu, 

2007). 

The issue of energy has been analyzed in a number of studies as it 

combines important aspects of power system security and efficiency. 

Scientific papers on energy and reserve planning by authors such as Singh 

and Papalexopoulos (1999) describe the auction market for ancillary 

services in California and their distribution, while also presenting the 

relationships between individual markets. While Ma et al. (1999) proposed 

a zone-based reserve model, Gan and Litvinov (2003) and Wu et al. (2004) 

analyzed the requirements for maintaining reserves throughout the system 

as a whole. Authors such as Afshar et al. (2008) presented the process of 

determining the level of energy reserves and described the methods of 

arriving at their optimum values, based on delivery costs and benefits that 

accrue from their availability. 

The majority of studies assume that the distribution of sufficient 

amounts of reserves across the remaining units is a sufficient condition to 

return the situation to normal. However, what also needs consideration are 

problems connected with network security, such as transmission line 

overload, bus voltage limits, and reserve distribution cost estimates. It is of 

fundamental importance here to address the question regarding the 

availability of Independent System Operators (ISO) in terms of resource 

distribution to ensure system security (Aghaei et al., 2009). In their 



 

attempts to answer this question, authors such as Aganagic et al. (1998), 

Alvey et al., (1998), and Cheung et al., (2000) assessed transmission 

network models with constrained transfer for individual lines with pre-

defined reserve levels for selected nodes or areas. 

Nevertheless, ISOs have continued to struggle with the issue of 

determining a method of employing all possible resources to combine 

system safety and fair settlement policy. This issue is particularly valid for 

units which are considered to be the expected providers of sufficient system 

reserves even though they could sell their energy at higher prices on an 

aggregated parallel market (CAISO, 2008). 

In order to overcome these problems successfully, an aggregated, 

parallel market framework has been developed for many products to 

mitigate the deficiencies of the sequential system. It also accounts for 

payments designed to compensate for lost opportunity costs to encourage 

energy providers to comply with the requirements for maintaining reserves. 

Adopting an additional objective function within the settlement procedures 

which takes into account system stability, as part of the non-linear multiple-

objective constrained optimization problem, means that generation costs 

and safety indicators are considered competitive goals. The issue of 

combined energy markets and reserves has been addressed by way of 

Mixed Integer Non-Linear Programming (MINLP), which reconciles 

security concerns with commercial aspects of market settlements. 

Market settlements are usually handled by the operators, who are 

responsible for determining the set of accepted purchase and sale proposals 

and the resulting market settlement prices. Therefore, the data concerning 

unit liabilities, production and consumption levels, as well as energy and 

reserve prices, are all the outcomes of the optimization procedure. These 

outcomes are determined by the purchase and sale proposals submitted by 

the market participants who are known to the market operators before the 

settlement procedure is initiated (Aghaei et al., 2009). 

During the multiple-objective optimization of the settlement procedure 

for combined day-ahead energy markets and reserve auctions, the primary 

objective function is to reduce the costs of the provided energy and reserves 

(AGC, TMSR, TMNSR and TMOR), as well as the lost opportunity costs 

(LOC) for hourly delivery. In view of the above, it is assumed that 

generators submit price quotations on the basis of marginal costs. In the 

energy market these take the form of multiple blocks and on the reserve 

markets they take the form of a single block for all types. 

Another important task of the ISO is the selection of the settlement 

procedure. In the most extensive form the generators are paid both on 

account of both lost opportunity costs and availability within the 

framework of reserve orders, i.e. the so-called A+L model. When system 



demand for different types of reserves is not satisfied, some generators 

have to reduce production in order to satisfy system demand as far as 

reserves are concerned. The lost opportunity cost due to the created 

reserves is defined as the cost of profit which would probably be gained by 

a generating unit if its generating powers were engaged in the energy 

market (Aghaei et al., 2009). This multi-criteria model also includes the 

category of the price of lost profits, which is the difference between the 

price possible on the independent energy market and the energy market 

shared with the reserves market. 

In deliberations concerning the amount of payments for generating units 

based on the A+L model, in order to use LOC in the equation for costs 

offered by generators, prior to the optimization of function one needs to 

consider the issue of energy transmission. It is assumed here that an energy 

system should be managed so that all the levels of bus voltage are within 

acceptable ranges, and that none of the transmission lines in the system are 

overloaded. 

In a market settlement procedure, the issue of system security in terms 

of taking into account voltage drops and transmission line overloads 

involves the use of indicators while formulating additional functions of 

purpose for the multi-criteria issue of optimization. It is assumed that one 

should aim to minimize those indicators defined as: the difference between 

the values of voltage in particular buses and the reference level to the 

referential and as a relation of flow of power for particular levels of lines 

connecting buses to their maximum flow capacity (Aghaei et al., 2009). 

In the end, the settlement price means the highest accepted price offer as 

the marginal cost of a particular unit in a bus if it is selected in the energy 

market: 

ρMCP ≥ Zi,u ρ
e
i,u 

where: 

ρMCP
 – is the highest accepted quote defined as marginal cost, 

Zi,u – is a binary variable, which has the value of 1 if a particular unit in the 

bus is selected to undertake activity on the energy market, otherwise the 

value is 0, 

ρe
i,u – offered price of energy for unit u in bus i (Aghaei et al., 2009). 

 

Conclusions 
 

Modern solutions regarding the modelling of the energy market can be 

effective in the field of predicting energy supply shortage. The precision of 

the forecasts requires the suitable construction of a model, which in the 

case of an ANN means the appropriate selection of explanatory variables, 

network topology, learning method and other parameters. It should be 



 

expected that the quality of the forecasts can be increased through the 

further optimization of the model components, such as by means of 

applying mathematical methods to modify the input data. 

Production capacity reserves are a fundamental instrument ensuring the 

safety of a power system. The possibility of using them within the 

framework of both preventive and corrective measures for security allows 

the system to survive undesirable events, without the necessity to cease 

handling demand. 

However, the necessity of ensuring stability of the supply parallel to 

economic optimization of the activities in the system resulted in the need to 

seek a settlement procedure on the auction market which would allow the 

achieving of both these objectives at the same time. 

The experiences of independent system operators in that regard show 

that payments received by generators should take into account the necessity 

of covering the lost opportunity costs, the costs of providing availability of 

resources within the framework of reserve orders and issues related to the 

security of supply of particular units. 
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